

Institute for Statics und Dynamics of Structures

Fuzzy probabilistic safety assessment

Bernd Möller

Fuzzy probabilistic safety assessment

Fuzzy probabilistic safety assessment

Institute for Static and Dynamics of Structures

Methods for computing the fuzzy failure probability \tilde{P}_{f}

Computing of P_f original by original.

If one original from each fuzzy probability basic variable is known, the assigned failure probability may be calculated, e.g., by approximated integration.

Fuzzy-Monte-Carlo Simulation

Improving the numerical efficiency by: Importance Sampling Subset Sampling Line Sampling

Original space of the basic variables

Fuzzy first order reliability method

Fuzzy first order reliability method

Institute for Static and Dynamics of Structures

Transformation of fuzzy random variables

FFORM – numerical realization

Fuzzy first order reliability method

Institute for Static and Dynamics of Structures

Safety verification: $\widetilde{\beta} \ge erf_{\beta}$

Example: Fuzzy stochatic safety assessment

Example: Fuzzy stochastic safety assessment

Institute for Static and Dynamics of Structures

Reinforced Concrete Frame

Features of the deterministic fundamental solution

Institute for Static and Dynamics of Structures

- plane structural model with imperfect straight bars and layered cross sections
- numerical integration of the system of 1st order differential equations for the bars
- interaction of internal forces
- incremental-iterative solution technique under consideration of complex loading processes

consideration of all essential geometrical and physical nonlinearities

- large displacements and moderate rotations
- realistic material description of reinforced concrete including cyclic and damage effects

FFORM - Analysis I

Institute for Static and Dynamics of Structures

fuzzy probabilistic basic variables

• load factor $v(x_1)$

extreme value distribution ex-max-type I (GUMBEL)

$$\begin{array}{l} \widetilde{m}_{x_1} \ = < 5.7; \ 5.9; \ 6.0 > \\ \widetilde{\sigma}_{x_1} \ = < 0.08; \ 0.11; \ 0.12 > \end{array}$$

• rotational spring stiffness $k_{\phi}(x_2)$ logarithmic normal distribution

$$\begin{array}{ll} x_{0,2} &= 0 \mbox{ MNm/rad} \\ \widetilde{m}_{x_2} &= < 8.5; \mbox{ 9.0}; \mbox{ 10.0 > MNm/rad} \\ \widetilde{\sigma}_{x_2} &= < 1.00; \mbox{ 1.35}; \mbox{ 1.50 > MNm/rad} \end{array}$$

FFORM - Analysis I (cont'd)

Institute for Static and Dynamics of Structures

original space of the fuzzy probabilistic basic variables

• fuzzy joint probability density function, crisp limit state surface and fuzzy design point

FFORM - Analysis I (cont'd)

Institute for Static and Dynamics of Structures

standard normal space

• crisp standard joint probability density function, fuzzy limit state surface and fuzzy design point

FFORM - Analysis II

Institute for Static and Dynamics of Structures

data and model uncertainty

 fuzzy probabilistic basic variable - load factor v
extreme value distribution

ex-max-type I (GUMBEL)

$$\begin{split} &\widetilde{m}_{x_1} = < 5.7; \, 5.9; \, 6.0 > \\ &\widetilde{\sigma}_{x_1} = < 0.08; \, 0.11; \, 0.12 > \end{split}$$

• fuzzy model parameter rotational spring stiffness \tilde{k}_{ϕ} fuzzy triangular number

 $\widetilde{k}_{\phi} = <5; 9; 13 > MNm/rad$

FFORM - Analysis II (cont'd)

Institute for Static and Dynamics of Structures

original space of the fuzzy probabilistic basic variables

• fuzzy probability density function, fuzzy limit state

FFORM - Analysis II (cont'd)

Comparison: Analysis I - Analysis II

$$H_u(\widetilde{\beta}_I) = 1.41 \cdot k < 2.48 \cdot k = H_u(\widetilde{\beta}_{II})$$

Influence - deterministic fundamental solution

Thank you !